Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Clin Exp Med ; 32(4): 457-467, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36398371

RESUMEN

BACKGROUND: Muscle loss and muscle weakness are manifestations of infection-induced sepsis, a condition that can lead to organ failure and death. Toll-like receptor 4 (TLR4) signaling and the NLRP3 inflammasome are involved in the inflammatory storm and the development of sarcopenia during sepsis. They are also potential targets for sepsis treatment. OBJECTIVES: To explore the effects and molecular mechanisms of sulforaphane (SFN) on sepsis-associated inflammation and sarcopenia. MATERIAL AND METHODS: Mouse C2C12 embryonic myoblasts were treated with lipopolysaccharide (LPS) to simulate sepsis-induced sarcopenia. Molecular mechanisms were investigated using quantitative real-time polymerase chain reaction (qRT-PCR), western blot, immunofluorescence, and enzyme-linked immunosorbent assay (ELISA). RESULTS: Sulforaphane significantly reduced the secretion of the inflammatory cytokine interleukin-1ß (IL-1ß) by C2C12 cells after LPS treatment, and inhibited the production of intracellular reactive oxygen species (ROS). It also increased the expression of E-myosin heavy chain, myosin ID heavy chain, and myogenin, and induced myogenic differentiation of LPS-treated C2C12 cells. Mechanistically, SFN reduced messenger ribonucleic acid and protein levels of TLR4, NLRP3, apoptosis-associated speck-like protein, and Caspase-1 in C2C12 cells, thereby inhibiting the inflammatory response and promoting myogenic differentiation. In addition, the TLR4 inhibitor TAK-242 induced myogenic differentiation in LPS-pretreated C2C12 cells in a similar manner. CONCLUSIONS: Sulforaphane can reduce sepsis-induced inflammatory responses and enhance myogenic differentiation by regulating the TLR4 and NLRP3 inflammasome pathways.


Asunto(s)
Sarcopenia , Sepsis , Ratones , Animales , Inflamasomas/metabolismo , Inflamasomas/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Lipopolisacáridos/farmacología , Receptor Toll-Like 4/metabolismo , Diferenciación Celular , Inflamación , Mioblastos/metabolismo
2.
Front Oncol ; 12: 1002036, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36530974

RESUMEN

Microfibrillar-associated protein 2 (MFAP2), a component of the extracellular matrix, is important in controlling growth factor signal transduction. Recent studies have shown that MFAP2, an effective prognostic molecule for various tumors, is associated with tumor occurrence and development and may be involved in remodeling the extracellular matrix and regulating proliferation, apoptosis, invasion, tumor cell metastasis, and tumor angiogenesis. However, MFAP2's specific mechanism in these tumor processes remains unclear. This article reviewed the possible mechanism of MFAP2 in tumorigenesis and progression and provided a reference for the clinical prognosis of patients with cancer and new therapeutic target discovery.

3.
J Orthop Surg Res ; 16(1): 150, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33610167

RESUMEN

OBJECTIVE: We aimed to investigate the therapeutic effects of Moringa oleifera leaf extracts on osteogenic induction of rat bone marrow mesenchymal stem cells (BMSCs) following peroxidative damage and to explore the underlying mechanisms. METHODS: Conditioned medium was used to induce osteogenic differentiation of BMSCs, which were treated with H2O2, Moringa oleifera leaf extracts-containing serum, or the phosphatidyl inositol-3 kinase (PI3K) inhibitor wortmannin, alone or in combination. Cell viability was measured using the MTT assay. Cell cycle was assayed using flow cytometry. Expression levels of Akt, phosphorylated (p)Akt, Foxo1, and cleaved caspase-3 were analyzed using western blot analysis. The mRNA levels of osteogenesis-associated genes, including alkaline phosphatase (ALP), collagen І, osteopontin (OPN), and Runx2, were detected using qRT-PCR. Reactive oxygen species (ROS) and malondialdehyde (MDA) levels, as well as superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and ALP activity were detected using commercially available kits. Osteogenic differentiation capability was determined using alizarin red staining. RESULTS: During osteogenic induction of rat BMSCs, H2O2 reduced cell viability and proliferation, inhibited osteogenesis, increased ROS and MDA levels, and decreased SOD and GSH-PX activity. H2O2 significantly reduced pAkt and Foxo1 expression, and increased cleaved caspase-3 levels in BMSCs. Additional treatments with Moringa oleifera leaf extracts partially reversed the H2O2-induced changes. Wortmannin partially attenuated the effects of Moringa oleifera leaf extracts on protein expression of Foxo1, pAkt, and cleaved caspase-3, as well as mRNA levels of osteogenesis-associated genes. CONCLUSION: Moringa oleifera leaf extracts ameliorate peroxidative damage and enhance osteogenic induction of rat BMSCs by activating the PI3K/Akt/Foxo1 pathway.


Asunto(s)
Moringa oleifera , Proteínas del Tejido Nervioso/metabolismo , Osteogénesis/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Peróxido de Hidrógeno , Masculino , Células Madre Mesenquimatosas , Hojas de la Planta , Ratas , Ratas Sprague-Dawley
4.
Exp Physiol ; 105(11): 1918-1927, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32964508

RESUMEN

NEW FINDINGS: What is the central question of this study? Does Dnmt3a play a crucial role in regulating diabetic muscle atrophy? What is the main finding and its importance? Muscle atrophy is one of the major long-term complications of diabetes mellitus. However, little is known about the molecular mechanism involved. In this paper, we demonstrated that Dnmt3a overexpression effectively improves the diabetic muscle health in mice and documented the underlying mechanisms. DNMT3A might become a promising target to prevent muscle atrophy in patients with diabetes. ABSTRACT: Muscle atrophy is one of the major long-term complications of diabetes mellitus, which greatly affects the mobility of patients. Epigenetic processes mediated by DNA methyltransferases (DNMTs) play crucial roles in the locomotor system, but little is known about the functions of DNMTs in diabetic muscle atrophy. Here, we investigated the function of Dnmt3a in diabetic muscle atrophy and explored the mechanisms involved. Adeno-associated virus AAV2 overexpressing Dnmt3a or its vector control was injected into the tibialis anterior muscle of streptozotocin-induced diabetic mice. Muscle mass and muscle cross-sectional area were used to evaluate muscle atrophy. In vitro, adeno-associated virus AAV2 overexpressing Dnmt3a or its vector control was transfected into C2C12 myoblasts. Horse serum was used to induce differentiation and palmitate to stimulate the C2C12 myoblasts. The expressions of myogenic regulatory factors were examined by real-time PCR and western blot analysis. Overexpression of Dnmt3a attenuated muscle atrophy in diabetic mice and promoted myotube formation of C2C12 myoblasts. Overexpression of Dnmt3a restored the expressions of myogenic regulatory factors atrogin-1, MuRF1, Pax7, Myod1 and myogenin, both in vivo and in vitro. Moreover, overexpression of Dnmt3a activated the phosphorylation of Akt by inhibiting the activation of Pten. This study demonstrates that overexpression of Dnmt3a prevents diabetic muscle atrophy by modulating the Pten/Akt pathway.


Asunto(s)
ADN Metiltransferasa 3A , Diabetes Mellitus Experimental , Atrofia Muscular , Fosfohidrolasa PTEN , Proteínas Proto-Oncogénicas c-akt , Animales , ADN Metiltransferasa 3A/genética , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Humanos , Ratones , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/etiología , Mioblastos/metabolismo , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
5.
FEBS Open Bio ; 10(5): 835-846, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32160414

RESUMEN

Thioredoxin (Trx) is a hydrogen acceptor of ribonucleotide reductase and a regulator of some enzymes and receptors. It has been previously shown that significantly elevated levels of Trx expression are associated with the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), but it is not clear how Trx regulates the effects of hydrogen peroxide (H2 O2 ) on myogenic differentiation of BMSCs. Here, we report that rat BMSCs treated with a high dose (150 µm) of H2 O2 exhibited a significant reduction in viability, cell cycling, and superoxide dismutase and glutathione peroxidase levels, and an increase in reactive oxygen species and malondialdehyde levels, which was accompanied by reductions in protein kinase B activation and forkhead Box O1, myogenic differentiation 1 and myogenin expression during myogenic differentiation. Furthermore, treatment with recombinant human Trx significantly mitigated the effects of H2 O2 on the myogenic differentiation of BMSCs, and this was abrogated by cotreatment with wortmannin [a specific phosphatidylinositol 3-kinase inhibitor]. In summary, our results suggest that treatment with recombinant human Trx mitigates H2 O2 -induced oxidative stress and may promote myogenic differentiation of rat BMSCs by enhancing phosphatidylinositol 3-kinase/protein kinase B/forkhead Box O1 signaling.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tiorredoxinas/metabolismo , Animales , Antioxidantes/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , China , Glutatión Peroxidasa/metabolismo , Peróxido de Hidrógeno/efectos adversos , Peróxido de Hidrógeno/metabolismo , Masculino , Células Madre Mesenquimatosas/fisiología , Desarrollo de Músculos/efectos de los fármacos , Desarrollo de Músculos/fisiología , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/fisiología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Tiorredoxinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...